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Abstract

Ž .The Fuzzy ARTMAP neural network is a supervised pattern recognition method based on fuzzy adaptive resonance theory ART . It is
Ža promising method since Fuzzy ARTMAP is able to carry out on-line learning without forgetting previously learnt patterns stable

. Ž .learning , it can recode previously learnt categories adaptive to changes in the environment and is self-organising. This paper presents
Ž .the application of Fuzzy ARTMAP to odour discrimination with electronic nose EN instruments. EN data from three different datasets,

Ž .alcohol, coffee and cow’s breath in order of complexity were classified using Fuzzy ARTMAP. The accuracy of the method was 100%
with alcohol, 97% with coffee and 79%, respectively. Fuzzy ARTMAP outperforms the best accuracy so far obtained using the

Ž . Ž .back-propagation trained multilayer perceptron MLP 100%, 81% and 68%, respectively . The MLP being by far the most popular
neural network method in both the field of EN instruments and elsewhere. These results, in the case of alcohol and coffee, are better than
those obtained using self-organising maps, constructive algorithms and other ART techniques. Furthermore, the time necessary to train
Fuzzy ARTMAP was typically one order of magnitude faster than back-propagation. The results show that this technique is very
promising for developing intelligent EN equipment, in terms of its possibility for on-line learning, generalisation ability and ability to deal

Ž .with uncertainty in terms of measurement accuracy, noise rejection, etc. . q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Ž .Electronic noses ENs are instruments, comprising an
array of chemical sensors with partial selectivity and an

Ž .appropriate pattern recognition system PARC , that are
capable of recognising simple or complex odours, in an

w xanalogue to the human nose 1 . A considerable number of
pattern recognition methods have been used to analyse the
response produced by sensor arrays. The nature of these
techniques can typically be classified using terms such as
parametric or non-parametric and superÕised or unsuper-

w xÕised 2 .
A parametric technique assumes that the sensor data can

Ž .be described by a probability density function PDF that a
posteriori defines its spread of values. In most cases, the
assumption made is that data are normally distributed with
a known mean and variance. Non-parametric methods do

) Corresponding author. Tel.: q44-1203-523-246; fax: q44-1203-
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not assume any PDF for the sensor data and thus apply
more generally, typical examples being supervised or un-
supervised neural networks.

In a supervised PARC method, a set of known odours
are systematically introduced to the EN, which then classi-

Ž .fies them according to known descriptors classes held in
a ‘knowledge base’. Then, in a second stage, an unknown
odour is tested against the knowledge base and the pre-
dicted membership class is given. Unsupervised PARC
methods do not need a priori knowledge about class
membership because they cluster the different classes us-

Ž .ing only the response input vectors.
Of all the PARC techniques, the back-propagation mul-

Ž .tilayer perceptron MLP neural network, which is a non-
linear, non-parametric and supervised method, has been
the most widely used. The MLP has been shown to

w xperform well in a variety of applications 3–6 . Standard
MLP has a number of drawbacks including the fact that it
has a limited capability to compensate for undesirable

Žcharacteristics of the sensor system e.g., changes in the
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sensor response due to temperature and moisture variations
.and drift , learns very slowly, etc. Standard MLPs are

trained ‘off-line’ and are unable to adapt autonomously, in
real time, to changes in the environment. Furthermore, the
dataset used to train the network may be increased during
the development phase by adding new measurements and
this would require the network to be re-trained using the
complete dataset. This can result in a time consuming and
costly process.

One possible way of improving the existing commercial
EN instruments is to apply pattern recognition techniques
that emulate, more closely, the way that the human olfac-
tive system is understood to work. In particular, a human
brain is able to learn many new events without necessarily
forgetting events that occurred in the past. If we want an
intelligent system capable of adapting ‘on-line’ to changes
in the environment, the system should be able to deal with
the so-called ‘stability–plasticity dilemma’. That is the
system should be designed to have some degree of plastic-
ity to learn new events in a continuous manner and, should
be stable enough to preserve its previous knowledge, and
to prevent new events destroying the memories of prior

Ž .learning. Adaptive resonance theory ART networks were
designed to address the stability–plasticity dilemma, are

w xcapable of real-time learning and classification 7 , and
w xhave been applied with some success to EN data 8 .

In this paper we examine the application of Fuzzy
w xARTMAP 9,10 , which is a supervised variant of Fuzzy

ART, to process EN data. There are several properties that
make Fuzzy ARTMAP a promising pattern recognition
method for EN systems.

Ø Exhibits fast learning of rare eÕents: Many tradi-
tional learning strategies use forms of slow learning that
average over the occurrence of similar events. Fuzzy
ARTMAP can rapidly learn a rare event that predicts
different consequences than a cloud of similar events in
which it is embedded.

Ø Suitable for non-stationary enÕironments: In a non-
stationary environment, traditional algorithms tend to loose
the memory of old, but still useful knowledge. Fuzzy
ARTMAP contains a self-stabilising memory that allows
for the accumulation of knowledge in response to a non-
stationary environment, until the memory capacity is full
Ž .memory can be chosen arbitrarily large .

Ø Ability to adjust the scale of generalisation: In many
environments some information may be coarsely defined,
whereas other information may be precisely characterised.
Fuzzy ARTMAP is able to automatically adjust its scale of
generalisation to match the morphological variability of
the data. It conjointly maximises generalisation and min-
imises predictive error using only information that is lo-
cally available under incremental learning conditions.

Ø Ability to learn many-to-one relationships: Many-to-
one learning combines categorisation of many exemplars
into one category, and labelling of many categories with
the same name. Individual recognition categories play the

w xrole of hidden units in the back-propagation model 11 .
Unlike the back-propagation model, Fuzzy ARTMAP dis-
covers, on its own, the number of categorical ‘hidden
units’ that it needs for a specific problem.

Ø Ability to deal with uncertainty: A key element in
any measurement system is uncertainty and the fuzzy
approach is one way of dealing with it.

In Section 2, a brief review of ART and Fuzzy
ARTMAP is given. This is followed by a discussion of the

Žapplication of Fuzzy ARTMAP to three EN datasets al-
cohol discrimination, coffee discrimination and diagnose

.of ketosis in dairy cattle . In the three cases, the results are
discussed and compared with those obtained when opti-
mised MLP networks were used.

2. Adaptive resonance theory

There are two general classes of ART networks: ART1,
ART2 and ART3. While ART1 is for classifying binary
input patterns, ART2 and ART3 are for analogue patterns.
Because Fuzzy ART and Fuzzy ARTMAP are generalisa-
tions of ART1 a brief review of this architecture will be
given. The reader can find a useful introduction to ART in

w x w xRef. 12 and is referred to Ref. 13 for further details.

2.1. ART1

ART1 is formed by two major subsystems: the atten-
tional subsystem and the orienting subsystem. The archi-
tecture of the ART1 network is shown in Fig. 1. Two
interconnected layers of neurones F1 and F2, which are
fully connected both bottom-up and top-down, comprise
the attentional subsystem. The links between F1 and F2 are
called adaptive filters where the weights represent the

Ž .long-term memory LTM because they remain in the
network for an extended period. The application of a single

Ž .Fig. 1. Architecture of the ART1 network. The short-term memory STM
Ž .patterns are stored in F1 and F2 layers. The long-term memory LTM of

the system is represented by the adaptive weights of both bottom-up and
top-down connections. Excitatory paths are denoted by a plus sign;
inhibitory paths are denoted by a minus sign.
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input vector leads to patterns of neural activity in both
layers F1 and F2. These patterns are known as the short-

Ž .term memory STM . The activity in F2 nodes reinforces
the activity in F1 nodes due to top-down connections. The
interchange of bottom-up and top-down information leads
to a resonance in neural activity. As a result, critical
features in F1 are reinforced, and have the greatest activ-
ity. The orienting subsystem is responsible for generating a
reset signal to F2 when the bottom-up input pattern and
top-down template pattern mismatch at F1, according to a
vigilance criterion. In other words, once it has detected
that the input pattern is novel, the orienting subsystem
must prevent the previously organised category neurones

Ž .in F2 from learning this pattern via a reset signal .
Otherwise, the category will become increasingly non-
specific. When a mismatch is detected, the network adapts
its structure by immediately storing the novelty in addi-
tional weights. The vigilance criterion is set by the value
of the vigilance parameter. A high value of the vigilance
parameter means than only a slight mismatch will be
tolerated before a reset signal is emitted. On the other

Ž .hand, a small value low vigilance means that large
mismatches will be tolerated. After the resonance check, if
a pattern match is detected according to the vigilance
parameter, the network changes the weights of the winning
node. The ART network stores a weighted part of the
present input vector in the LTM, just as any other neural
network does. A summarised mathematical model is as
follows:

Let: Is I , . . . , IŽ .1 M

be the input vector with M components where I s1 or 0i
Ž .ART1 requires binary inputs ;

Xs X , . . . , XŽ .1 M

be the vector of F1 nodes where X s1 or 0.i

Let w be the top-down weight from the winning nodeJ i
Ž .J in the F2 layer F2 is a competitive layer to a node i in

the F1 layer, and let z be the corresponding bottom-upi J
Žweight. Assuming fast learning e.g., weight update equa-

tions reach their asymptotic values before the next training
.vector is presented , the weights take the values:

1 if igXw s 1Ž .ji ½ 0 otherwise

L°
if igX~z s 2Ž .< <Ly1q Xi J ¢

0 otherwise
< <where X is the cardinality of X , and L is a network

Ž .parameter L)1 .
If W is the vector of top-down weights from theJ

winning neurone in F2 and Z is the vector of bottom-upJ
Ž . Ž .weights, Eqs. 1 and 2 can be rewritten as follows:

W sX 3Ž .J

LX LWJ
Z s s . 4Ž .J < < < <Ly1q X Ly1q WJ

A given node j in the F2 layer gets the following input
from the F1 layer:

isM

t s z I . 5Ž .Ýj i j i
iy1

Ž . Ž .Using Eq. 4 , Eq. 5 can be rewritten in terms of the
top-down weights:

isML
t s w I . 6Ž .Ýj ji iž /< <Ly1q Wj is1

Ž .The summation term in Eq. 6 is the number of
common 1s the vectors W and I have in correspondingj

Ž .positions. Then, Eq. 6 can be rewritten as:

< <L IlWj
t s 7Ž .j < <ž /Ly1q Wj

< <where IlW is the cardinality of the intersection set ofj

W and I.j

Category choice is made by selecting the neurone in F2
with the maximum value for t . Thus, the Choice Functionj

can be defined as:

< <IlWj
T I s . 8Ž . Ž .j < <Ly1q Wj

A given node i in the F1 layer is active only if both
top-down weight W from the winning F2 node and theJ i

input to node i are non-zero:

< <Xs IlW . 9Ž .J

The winning node J in the F2 layer is reset by the
orienting subsystem if:

< <IlWJ
-r 10Ž .

< <I

where r is the vigilance parameter. Once a node is reset, it
remains inactive for the duration of the trial.

2.2. Fuzzy ART

Ž . Ž .Fuzzy ART is a generalisation of Eqs. 8 – 10 . The
generalisation is achieved by using fuzzy set theory opera-
tions rather than binary set theory operations. An overview
of fuzzy set theory and fuzzy neural networks can be

w xfound in Ref. 14 .
ŽInput nodes can take values between 0 and 1 analogue

. Žpatterns . The wining neurone in the F2 layer e.g., wining
.category is the one for which the choice function attains

its maximum value. The new choice function, derived
Ž .from Eq. 8 is as follows:

< <InWj
T I s 11Ž . Ž .j < <Ly1q Wj
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Fig. 2. Architecture of the Fuzzy ARTMAP network. It consists basically
Žof two ART modules interconnected by an associative memory or map

.field and some internal control structures that regulate learning and
information flow. Inhibitory paths are denoted by a minus sign; other
paths are excitatory.

where InW is the equivalent operation in fuzzy setj

theory of the intersection of W and I in standard setj

theory. Thus:

InW s min I , w , . . . ,Ž .Žj 1 j1

min I , w , . . . , min I , w 12Ž .Ž . Ž . .i ji M jM

and the expression for the cardinality is as follows:
M

< < < <X s X . 13Ž .Ý i
is1

The winning category is reset by the vigilance subsystem
if:

< <InWJ
-r . 14Ž .

< <I

ŽWhen a node in F2 is first committed e.g., because
.novelty has been detected , a fast commit equation is used:

W Žnew .sI . 15Ž .J

Once a node has been committed, a slow recode equa-
tion is used to change the weights towards the spatial
position of the actual input vector:

W Žnew .s InW Žold . q 1yb W Žold . 0FbF1.Ž .Ž .J J J

16Ž .
The slow recode of committed nodes prevents noisy

data from erroneously recoding them. Small values of b

cause the system to base its results on a long-term average
of its experience, while values of b near 1 allow adapta-
tion to a rapidly changing environment.

2.3. Fuzzy ARTMAP

Fuzzy ARTMAP in its most general form, includes two
Ž .Fuzzy ART modules ART and ART whose F2 layersa b

are linked by an inter-ART associative memory referred to
as ‘match tracking system’. The Fuzzy ARTMAP architec-

w xture is shown in Fig. 2. The reader is referred to Ref. 9
w xand to Ref. 11 for a detailed review of this architecture.

During supervised learning ART receives a stream ofa
� M 4input patterns a and ART also receives a stream ofb

� M 4 Mpatterns b , where b is the correct prediction given
aM. When a prediction by ART is not confirmed bya

ART , inhibition of the inter-ART associative memoryb

activates a match tracking process. This increases ARTa

vigilance by the minimum amount needed for the system
either to activate an ART category that matches the ARTa b

category or to learn a new ART category. Fuzzy ARTMAPa

carries out supervised learning like back-propagation. But
unlike back-propagation, Fuzzy ARTMAP is self-organis-
ing, self-stabilising and suitable for real-time learning.
Section 3 deals with the application of Fuzzy ARTMAP to
three different EN datasets.

3. Application of fuzzy ARTMAP to EN data

3.1. Datasets

Three EN datasets were analysed. The first two datasets
were collected using an EN that consisted of an array of 12

Žcommercial metal oxide semiconductor gas sensors Figaro
.Engineering, Japan . The third dataset was collected using

Žan EN consisting of six metal oxide sensors Figaro and
.FIS, Japan . Table 1 is a list of the sensors used.

The first dataset consisted of samples taken from the
headspace of simple alcohols: 5 ppm in air of methanol,
ethanol, butan-1-ol, propan-2-ol and 2-methyl-butanol. The
process was repeated to provide eight identical samples of
each of the five classes, making a set of 40 input vectors

Table 1
List of the metal oxide semiconductor sensors used

Sensor Manufacturer Alcoholr Cow’s breath
coffee analysis analysis

TGS 812 Figaro U

TGS 711 Figaro U

Ž .TGS 813 Figaro U 2
TGS 814 Figaro U

TGS 824 Figaro U

TGS 815 Figaro U

TGS 882 Figaro U

Ž .TGS 816 Figaro U 2
TGS 817 Figaro U

TGS 880 Figaro U

NFIN43 FIS U

NFI1813 FIS U

TGS 825 Figaro U U

STAQ1A FIS U

TGS 822 Figaro U
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w x3 . The second dataset consisted of samples taken from
the headspace of three different roasted coffees. Two of
the coffees were of the same roasting level but different
blends, while the third was a different roast level but of the
same blend as one of the first two coffees. The process
was repeated to provide 30 samples of the first two coffees

w xand 29 of the third, making a total of 89 input vectors 15 .
The third dataset consisted of samples of the breath of
cows. The aim was to diagnose ketosis in cows, a disease
that is characterised by the accumulation of ketone bodies
in an organism. The cows were classified into three differ-
ent categories: healthy, ketotic and sub-clinical ketotic.
These three categories were previously established by
analysing blood samples from the cows studied. The mea-
surement of the breath samples was repeated to provide

Ž136 measurements 75 of ketotic, 46 of healthy and 15 of
. w xsub-clinical cows 16 .

3.2. Data pre-processing

The choice of the data pre-processing algorithm has
been shown to affect the performance of the pattern recog-
nition stage. The choice should depend upon the underly-
ing sensor principle and the nature of interfering signals.
When metal oxide semiconductor sensors are used, it has
been shown that the fractional change in conductance
Ž odour air . airG yG rG helps both to linearise the sensor
response with concentration and to reduce its temperature
sensitivity, this has been shown to improve the perfor-

w xmance of neural network based techniques 5 . For the
alcohol and coffee data sets the fractional change in sensor
conductance was used. For the cow data set, in addition to
the fractional conductance change, we experimented with
the rise time of the conductance defined as t sr

Ž < odour < air .0.6 t y t as well because it has been shownGs G GsG

that, in some cases, information from sensor dynamics can
w xhelp odour recognition 6 . In all the cases studied, the data

w xwere also normalised to set their range to 0, 1 when
Fuzzy ARTMAP networks were used.

The Fuzzy ARTMAP networks were simulated using
the NeuralWorks Professional IIrPlus software from Neu-

w xralWare, USA 17 .
It is important to note that in order to facilitate the

comparison between the Fuzzy ARTMAP results and those
previously published, relating to the use of MLPs, we have
employed the same neural network evaluation strategy.
Thus, the datasets can be regarded as a benchmark for the
Fuzzy ARTMAP approach.

3.3. Results

3.3.1. Alcohol data
The alcohol dataset was divided into eight test folds

Žcontaining one measurement of each alcohol five mea-
.surements per fold . Given a test fold, the neural network

was trained using the remaining 35 measurements and then
tested with the five test vectors, one from each class. The

Ž .network had 12 inputs one per sensor in the array and

five outputs, since a 1-of-5 code was used to code the five
different alcohols. For Fuzzy ARTMAP, the baseline vigi-
lance was set to 0. This is the recommended value for the
vigilance since it allows for very coarse categories and the
match tracking system will only refine these categories if

Ž Ž ..necessary. The recode rate b in Eq. 16 was set to 0.5.
This value allows the established categories to be modified

Ž .if there is a persistent attempt to do so slow recode . The
Ž Ž ..values of the choice parameter Ly1 in Eq. 11 and

Žerror tolerance if the output error is greater than the
.tolerance, then a reset signal is triggered were varied. It

was found that 0.1 and 0.01, respectively, were optimal for
this experiment. It was found that Fuzzy ARTMAP was
able to accurately classify 100% of the alcohol samples.

Ž .During the training process six nodes that is categories
were committed. A back-propagation network with 12

w xinput, seven hidden and five output neurones 3 was also
able to reach a 100% success rate in alcohol classification.
However, while the back-propagation network required
typically 10,000 training cycles to obtain these results, the
Fuzzy ARTMAP required only 50 training iterations. Thus,
the time necessary to train the network was dramatically

w xreduced. Other types of ART based neural networks 8 ,
and techniques for automating the design of MLP, such as

w x w xconstructive algorithms 18 and genetic algorithms 19
were explored previously. However, the results did not
show any significant advantage compared with those of
Fuzzy ARTMAP.

3.3.2. Coffee data
The analysis of coffees is a more difficult problem to

solve than that of the alcohols because the headspace of
coffee forms a complex odour. The coffee dataset was
divided into five test folds containing 18 measurements

Ž .each six measurements per coffee category . Given a test
fold, the neural network was trained using the remaining
71 measurements and then tested with the 18 test vectors,
six from each class. The network has 12 inputs and three
outputs since a 1-of-3 code was used to code the three
different coffees. Table 2 shows the results of the classifi-
cation of coffee data sets. Only three samples were mis-
classified, leading to an accuracy of 97% in coffee classifi-

Table 2
Results of analysing the coffee data set using Fuzzy ARTMAP after 80
training iterations

Ž71 patterns were used for training and 18 patterns tested in each fold 17
.in the 5th fold . Baseline vigilances0, recode rates0.5, choice parame-

ters0.1 and error tolerances0.001.

Fold Patterns Accuracy
Ž .misclassified %

1 0 100
2 1 94
3 1 94
4 0 100
5 1 94
Total 3 97
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cation. The number of training iterations was typically
equal to 80 and the number of committed nodes after
training was 15. This result compares favourably to the
81% accuracy obtained with a back-propagation neural

w xnetwork 4 . Other approaches that were investigated previ-
w xously such as different ART based neural networks 8 or

w xself-organising maps 20 did not show significant advan-
tages compared with back-propagation.

3.3.3. Cattle diagnosis
This was a much more difficult problem to solve be-

Žcause the breath samples were collected in the field actu-
.ally a barn! over a 2-week period. This implies that the

background air was subject to considerable environmental
variations in terms of ambient temperature, humidity, etc.
The cow dataset was divided into 4 test folds containing

Ž34 measurements each 19 corresponding to ketotic cows,
.12 of healthy cows and three of sub-clinical cows . Given

a test fold, the neural network was trained using the
remaining 102 measurements and then tested with the 34
test vectors. The network has six inputs and three outputs
since a 1-of-3 code was used to code the three different
diagnoses. Table 3 shows the results of the classification
when the rise time of the sensor conductance was input to
the Fuzzy ARTMAP network. The number of training
iterations was 200 and the number of committed nodes
was 36. The use of the dynamic information led to a

Ž .slightly better accuracy 79% compared with a 75% accu-
racy when the fractional change in conductance was used.
These results also compare favourably to the 56% accu-
racy obtained with a four-input, five-hidden and three-
output back-propagation neural network or to the 68%
accuracy obtained with a four-input, five-hidden and one-
output network, which is significantly higher than the a

w xpriory probability of 56% for ill cows 16 .
Table 4 summarises the performances of Fuzzy

ARTMAP and back-propagation networks for the analysis
of the three datasets.

Table 3
Results of analysing the cow’s breath data set using Fuzzy ARTMAP
after 200 training iterations
102 patterns were used for training and 34 patterns tested in each fold.
Baseline vigilances0, recode rates0.5, choice parameters0.1 and
error tolerances0.01.

Fold Patterns Accuracy Patterns Accuracy
Ž . Ž .misclassified % misclassified %

a bŽ . Ž .three categories two categories

1 5 85 3 91
2 7 79 4 88
3 9 74 7 80
4 8 77 5 85
Total 29 79 19 86

a Healthy, sub-clinical and ketotic.
b Ž .Healthy and ill this last category includes sub-clinical and ketotic .

Table 4
Comparison of the performance of Fuzzy ARTMAP and back-propa-
gation neural networks on alcohol, coffee and cow’s breath data

Ž .Algorithm Accuracy % Training iterations

Alcohol Coffee Cow Alcohol Coffee Cow

Fuzzy ARTMAP 100 97 79 50 80 200
Back-propagation 100 81 68 10,000 10,000 1000

3.4. Significance test

A t-test was performed to assess if Fuzzy ARTMAP
was performing significantly better than the MLP in terms
of the total number of patterns correctly classified for
coffees and cattle diagnosis. The null hypothesis H 0

demonstrated that there was no significant difference be-
tween the mean number of patterns misclassified by the
Fuzzy ARTMAP and the MLP. The null hypothesis H 0

Žwas clearly rejected at 5% significance level ts7.48 for
.coffees and ts3.22 for cattle diagnosis because the

critical t values at 5% significance level for 4 and 3 df are
less at 2.13 and 2.35, respectively.

4. Summary and conclusions

Fuzzy ARTMAP neural networks have been applied to
the classification of alcohol, coffee and cow’s breath pat-
terns, gathered with EN instruments. An accuracy of 100%
on alcohol, 97% on coffee and 79% on cow’s breath was
achieved. It was found that these performances compared
favourably with those achieved previously with back-prop-

Ž .agation trained MLPs 100%, 81% and 68%, respectively
and other techniques. Furthermore, the training time of
Fuzzy ARTMAP was found to be typically an order of
magnitude faster than back-propagation. There are several
properties of Fuzzy ARTMAP networks that may explain
these promising results.

Ø Because they are self-organising, the number of
training patterns and the number of training iterations
needed to match, or exceed, the performance of MLP is
lower. Thus, calibration and training times in the develop-
ment of an instrument may be significantly reduced.

Ø The number of committed nodes in the F2 layer has a
similar meaning to the hidden neurones in the MLP ap-
proach. While in Fuzzy ARTMAP the nodes are commit-
ted automatically, the MLP requires the number of hidden
neurones to be optimised by means of a trial–error proce-
dure. We have explored techniques for automating the
design of MLP but none of them have been found to have
such a significant effect as the use of Fuzzy ARTMAP.

Ø Fuzzy ARTMAP is able to learn new patterns with-
out forgetting older ones, as long as the memory of the
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system is not full. Furthermore, it is able to slowly recode
previous categories, to be able to adjust for example for
the long-term drift of the sensors. This may explain why it
outperforms MLP in the analysis of the cow’s breath
samples. These samples were measured over a period of 2
weeks and were therefore likely to be subjected to signifi-
cant variations in the temperature and moisture conditions.

Ø Fuzzy set processing is one way of attempting to deal
with uncertainty, which is a key element in any measure-
ment system, and this is an inherent feature in Fuzzy
ARTMAP. For example, the system can deal with noise in
the input patterns via the error tolerance parameter, which
is used by the match tracking system for triggering a
category reset, and this can be optimised for every specific
application.

The fact that Fuzzy ARTMAP is able to perform on-line
learning without forgetting previous learnt patterns and the
fact that it can deal with uncertainty in the data makes this
approach very promising for the development of the next
generation of intelligent EN systems.
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